80 research outputs found

    Optimal variance estimation without estimating the mean function

    Full text link
    We study the least squares estimator in the residual variance estimation context. We show that the mean squared differences of paired observations are asymptotically normally distributed. We further establish that, by regressing the mean squared differences of these paired observations on the squared distances between paired covariates via a simple least squares procedure, the resulting variance estimator is not only asymptotically normal and root-nn consistent, but also reaches the optimal bound in terms of estimation variance. We also demonstrate the advantage of the least squares estimator in comparison with existing methods in terms of the second order asymptotic properties.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ432 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    NBLDA: Negative Binomial Linear Discriminant Analysis for RNA-Seq Data

    Full text link
    RNA-sequencing (RNA-Seq) has become a powerful technology to characterize gene expression profiles because it is more accurate and comprehensive than microarrays. Although statistical methods that have been developed for microarray data can be applied to RNA-Seq data, they are not ideal due to the discrete nature of RNA-Seq data. The Poisson distribution and negative binomial distribution are commonly used to model count data. Recently, Witten (2011) proposed a Poisson linear discriminant analysis for RNA-Seq data. The Poisson assumption may not be as appropriate as negative binomial distribution when biological replicates are available and in the presence of overdispersion (i.e., when the variance is larger than the mean). However, it is more complicated to model negative binomial variables because they involve a dispersion parameter that needs to be estimated. In this paper, we propose a negative binomial linear discriminant analysis for RNA-Seq data. By Bayes' rule, we construct the classifier by fitting a negative binomial model, and propose some plug-in rules to estimate the unknown parameters in the classifier. The relationship between the negative binomial classifier and the Poisson classifier is explored, with a numerical investigation of the impact of dispersion on the discriminant score. Simulation results show the superiority of our proposed method. We also analyze four real RNA-Seq data sets to demonstrate the advantage of our method in real-world applications

    Optimal-kk difference sequence in nonparametric regression

    Full text link
    Difference-based methods have been attracting increasing attention in nonparametric regression, in particular for estimating the residual variance.To implement the estimation, one needs to choose an appropriate difference sequence, mainly between {\em the optimal difference sequence} and {\em the ordinary difference sequence}. The difference sequence selection is a fundamental problem in nonparametric regression, and it remains a controversial issue for over three decades. In this paper, we propose to tackle this challenging issue from a very unique perspective, namely by introducing a new difference sequence called {\em the optimal-kk difference sequence}. The new difference sequence not only provides a better balance between the bias-variance trade-off, but also dramatically enlarges the existing family of difference sequences that includes the optimal and ordinary difference sequences as two important special cases. We further demonstrate, by both theoretical and numerical studies, that the optimal-kk difference sequence has been pushing the boundaries of our knowledge in difference-based methods in nonparametric regression, and it always performs the best in practical situations
    • …
    corecore